
J O U R N A L  OF M A T E R I A L S  S C I E N C E  20 (1985) 4354-4376 

Fracture indentation beneath flat and 
spherical punches 

R. M O U G I N O T  
Etablissement Technique Central de rArmement, 16 bis Av. Prieur de la C6te d'Or, 
94114 Arcueil Cedex, France 

D. M A U G I S  
Equipe de recherche CNRS ER259, M#canique des Surfaces, LCPC, 58 Bd Lefebvre, 
75015 Paris, France 

The mechanics of crack initiation and propagation beneath an axisymmetric flat 
punch are investigated. The stress tensor given by Sneddon in 1946 is described. 
Numerical integration along stress trajectories gives the strain energy release rate as 
a function of both the crack length and its position relative to the indenter. Com- 
parison with Hertzian fracture is made. The initiation of crack outside the circle of 
contact is shown to be due to the steepest gradient of stresses along the flaws near 
the circle of contact. The meaning of Auerbach's law is discussed. The Auerbach 
range is shown to correspond to the relatively flat maximum of the envelope of the 
G against c/a curves for various starting radii. The influence of subcritical crack 
growth is also discussed. The model proposed in 1978 by Maugis and Barquins for 
kinetics of crack propagation between punches and viscoelastic solids is used. It is 
assumed that the static fatigue limit corresponds to the true Griffith criterion with 
intrinsic surface energy 7, and that the critical strain energy release rate Go corre- 
sponds to a criterion for crack speed instability and velocity jump, so that no stress 
corrosion is needed to explain subcritical crack growth for 27 < G < Go. The 1971 
experimental results of Mikosz'a and Lawn are easily interpreted by this model. 
Finally, experiments performed on a borosilicate glass give results that agree satis- 
factorily with the theory. Due to kinetic effects, an apparent surface energy of about 
4.5J m -2 is obtained, larger than the intrinsic surface energy and slightly lower than 
the fracture energy derived from high-speed experiments. 

1. I n t r o d u c t i o n  
Since the early work of  Auerbach [1], fracture of  
brittle solids by spherical indenters has been 
extensively studied. The mechanism of  cone 
crack initiation and propagation is relatively 
well understood by using the Her tz -Huber  stress 
tensor [2, 3] and fracture mechanics [4-6]. How- 
ever the Hertzian fracture test, despite its sim- 
plicity, presents some drawbacks: the area of 
contact increases with load, and the surface trace 
of the crack cone can be enveloped by the 
expanding contact circle, causing secondary 

fractures and application of  the load both on the 
cone and the half-space. Furthermore, stress 
trajectories move as the radius of contact 
increases, rendering the analysis more delicate. 
As recognized by Roesler [7], cylindrical, flat- 
ended punches are better, and this geometry was 
used to give a constant radius of contact and to 
study the well-formed cone crack [7-12]. How- 
ever, the theoretical analysis of  fracture inden- 
tation by flat punches has never been done, most 
probably because the authors were unaware of  
the stress tensor computed by Sneddon [13]. This 
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Figure 1 Stress trajectories (a) and contours  of  the reduced principal stresses (b, c, d) for a fiat punch (v = 0.22). 

work is done here, and the fracture indentation 
by a flat punch is compared with the Hertzian 
fracture for a material with v - - 0 . 2 2 ,  the 
Poisson ratio of  the optical glass used for experi- 
mental verifications. 

2. The f la t  p u n c h  s t ress  f i e l d  
This stress field has been given by Sneddon [13] 
(with misprints later corrected by Barquins and 
Maugis [14]). Figs. 1 and 2 compare stress trajec- 
tories and contours of  the reduced principal 
stress 0-/Pm (where Pm = 1t>/zca2 is the mean 
pressure) for the fiat punch and the sphere. 
Stress trajectories exhibit vertical and horizontal 
tangents beneath the punch (isocline 0 ~ in dashed 

lines). Following Lawn [15] the principal stresses 
0-1, 0"2, 0"3 are so labelled that 0-1 > 0-2 > a3 
nearly everywhere and 0-2 is the hoop stress. At 
the edge of  the fiat punch stresses are infinite, 
but outside the circle of  contact the surface 
stresses and the surface displacements are the 
same as for the sphere. According to a proof  by 
Way [16] they are independent of the stress dis- 
tribution inside the circle of  contact and are 
those of  a concentrated force: 

1 - 2 v P  
0"1 - 2n r 2 ( la)  

1 - 2 v P  
0"2 - 2n r 2 ( lb)  
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Figure 2 Stress trajectories (a) and contours of  the reduced principal stresses (b, c, d) for a spherical punch (v = 0.22). 

At large distance from the origin the stress field 
is that of the Boussinesq concentrated force 
(depicted by Lawn and Swain [17]) according to 
the St Venant principle. 

Figs. 3 and 4 compare the distribution of  
stress ~r I as a function of  relative distance c/a 
along the stress trajectories starting at various 
values of  to~a, for the flat punch and the sphere: 
the stress falls more rapidly with the flat punch, 
especially near the edge of the contact. It can 
thus be anticipated that a surface flaw just near 
the edge of  the contact can hardly be activated 
by the tensile stress acting along it in comparison 
with outer surface flaws. 
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3. Fracture analysis 
Let us assume, as usually, that the crack follows 
the o- 3 trajectory starting at radius r0 > a (Fig. 
5). The initial growth is thus close to vertically 
downward, with a constant crack front 2gr0; 
then the crack path widens following a cone with 
a crack front 2~rc constantly lengthening. The 
analysis generally done for Hertzian crack 
initiation [4-6] uses for the stress intensity factor 
the equation 

(~)1/2 ic ( C~tr(b)db~ -~-)1/2 
K, = 2 0o (2a) 

derived for an internal crack of  length 2c in an 
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Figure 3 Flat punch (v = 0.22). Distr ibut ion of  stress a~ as 
a function of  relative distance c/a along the a 3 trajectories 
starting at var ious ro/a. 

infinite plate, the crack being subject to a normal 
stress a(b) that varies along its length. This for- 
mula is also correct for a ring-shaped crack, but 
for a cone o-(b) acts on a ring of length 2~rb, 
while K~ refers to points on the crack front of 
length 2grc that suffer less intensification of 
stress than a crack front of constant length. In 
this case, as suggested by our referee, "t is better 
to write 

(0 = 
KI = 2 fs rb ~(b)db 

rc (d -- -U) ~/~ (2b) 
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Figure 4 Spherical punch  (v = 0.22). Distr ibut ion of  stress 
~t as a function of  relative distance c/a along the ~3 trajec- 
tories for various ro/a. 
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Figure5 The well-formed cone (v = 0.22, ro/a = 1.4, 
c/a = 4.5). 

Equation 2b has the advantage to reduce to 
Equation 2a for crack initiation, and to be con- 
sistent for a complete cone (rb/r  c = b/c)  with the 
well-known formula for a penny-shaped crack 
(see Barenblatt [18] p. 96 and Rice [19]); i.e. for 
cone of semi-angle re/2 

2 f<~ bcr(b)db /q (2c) J0 (e2 - b~)'/~ 

Another difficulty arises from the fact that in 
many cases, especially in the Auerbach range 
(see Section 10.1), the crack does not develop 
symmetrically down from the surface, but rather 
gently runs round the contact area from a flow, 
to form a complete circle. This is difficult to 
analyse by fracture mechanics, and in the follow- 
ing we will always assume that axial symmetry 
holds. 

As for any tridimensional crack, the plane 
strain formula applies [20] and the strain energy 
release rate is 

1 - v 2 
C - ~ K? (3) 

For a flat punch, as well as for a sphere, the 
stresses can be normalized by the mean pressure, 
and have the general form 

r P f { r ,  ~ ( a ' Z )  = ~ \ a  z)  (4) 

so that G has the general form 

723 -E a 3 @ a rola,v 
G m 

with 

[d~(cla)].ol,,, v = 
C | l  rb \ a / _ _ \ a / |  

(e2 b2,f= I 

(6) 
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Figure 8 Flat punch (v = 0.22). Reduced strain energy 
release rate against e/afor various loads. Starting radius of 
crack: ro/a = 1.10. 

Figure 6 Flat punch (v = 0.22). Strain energy release rate 
function ~(c/a) for various starting locations at the surface. 
Dashed lines: undiminishing stress field approximation for 
small e/a; Roesler approximation for large c/a. 
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Figure 7 Spherical punch (v = 0.22). Strain energy release 
rate function d)(e/a) for various starting locations at the 
surface. Dashed lines: undiminishing stress field approxi- 
mation for small c/a; Roesler approximation for large e/a. 
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For  very small c/a, a(b) can be considered as a 
constant along the crack, with f(b/a) = (1 - 
2v)a2/2rg given by Equation 1, and integration of 
Equation 6 with r b - - - -  r e gives 

G --~ ~z ~ a 

independent o f  the punch geometry. Otherwise 
the function O(c/a) is obtained by numerical 
integration of  Equation 6. The results are com- 
pared in Figs. 6 and 7 for the flat punch and the 
sphere, for v = 0.22 and various starting values 
ro/a. For  the sphere the curves display a single 
maximum, whereas for the flat punch two maxima 
appear  for ro/a < 1.2. 

4. In i t iat ion of f rac tu re  
4.1. Curves with two maxima 
In this case the analysis is similar to that given by 
Frank and Lawn [4] and Langitan and Lawn [21] 
for the sphere. Consider (Fig. 8) the curve G/27 
against c/a for a given initial value ro/a. The 
equilibrium corresponds to G/2y = 1, and this 
equi]ibrium is unstable on a branch with positive 
slope, and stable on a branch with negative one. 
Let P* be the load whose hump reaches the line 



G/27 = 1, and c*/a and c*/a the abcissae of the 
two left-hand intersections. 

Let us consider a surface flaw of  length cf 
situated at r/a and such that c* < cf < c*. By 
increasing the load, G at the crack tip increases 
until G = 27. At this point the load is given by 

( ~3E7 `]1/2 ( a 3 ,],/2 
Pc = \~2(i : v2)l \[*(c-~a)l,o/J (8) 

If at this point the slope is negative, the flaw is 
in stable equilibrium; if it is positive, G increases 
at constant load Pc and the crack spontaneously 
extends, taking the energy from the elastic field. 
When the first maximum is reached, G then 
decreases and the crack slows down (see Section 
11) on the stable branch until G/2y -- 1 again 
and then stops, forming a shallow ring around 
the punch. On increasing the load further, the 
crack extends in a stable manner with the load, 
until c = c* and P = P*. At this stage the 
shallow ring becomes unstable, and as above the 
crack accelerates and then decelerates at con- 
stant load P* forming a well-developed stable 
cone when it stops at G -- 2y. The critical load 
for initiation of the cone is thus P*,  given by 

p ,  = ( rc3E7 ~,/2( a 3 ~,/2 
\2(1 - v:)J \[@(c*/a)],o/o ) (9) 
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Figure 9 Flat punch (q = 0.22). Reduces strain energy 
release rate against c/a for various loads. Starting radius of 
the crack: ro/a = 1.40. 

This load can be independent of  the initial flaw 
size, with the sole condition that the starting 
radius ro/a be independent of the flaw size. 

If  the surface flaw at r o/a is such that cf < c~', 
the equilibrium load given by Equation 8 is larger 
than P*, and as this equilibrium is unstable G 
increases and then decreases, increases anew and 
decreases, passing through two maxima and 
giving directly the well-formed cone. The critical 
load is still given by Equation 8. For  such a small 
flaw, the undiminishing stress field approxi- 
mation of  Equation 7 can be used, giving 

Pc = (1 - v 2)(1 - 2v)U kCr/ 
a3/2 

(lO) 

independent of the punch geometry. For  a 
sphere, this reduces to Equation 17 of  Wilshaw 
[22] (except for the factor 1.12), ie. Pc varying as 
R2(ro/a) 6. 

4.2. Curves  wi th  a s ing le  m a x i m u m  
Let c"/a be the abcissa of  the maximum for a 
given value of  ro/a (Fig. 9). If  cr/a < c"/a (small 
flaws or punch of large radius), G increases at 
the crack tip as the load increases until G = 27 
at the load Pc given by Equation 8. The equi- 
librium is thus unstable and at the constant load 
Pc, G increases and then decreases, with the 
crack accelerating and then slowing down until 
G = 27 is reached anew. A shallow ring or a 
cone thus appears at this critical load Pc- The 
smaller the initial flaws, or the larger the punch, 
the greater the cone formed. 

Ifcr/a > c"/a (large flaws or small punch), the 
flaw at ro/a is in stable equilibrium as soon as 
G = 2y, and the crack extends in stable manner 
when the load increases further. In this case the 
critical load is difficult to detect. 

5. The start ing radius of the crack 
The critical load for crack initiation depends 
strongly on the starting radius ro/a of  the crack. 
This is clearly visible in Equation 10 for the 
undiminishing stress field. At this stage it is not 
possible to say that the critical load P* corre- 
sponding to the hump is independent of the flaw 
size, as often quoted, since Cb(c*/a) depends on 
r o/a. 

In Hertzian fracture it has been long recog- 
nized [22-28] that the cone does not initiate at 
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the edge of the contact, but at larger ro/a, say 1.1 
to 1.4, the value increasing as the ball radius R 
decreases [26, 27], or the abrasion increases [28]. 
The same behaviour is observed for the flat 
punch, but with ro/a still higher (see below). Two 
kinds of explanation have been proposed. The 
first, by Johnson et al. [27], is that an interfacial 
shear stress appears due to elastic mismatch, 
causing the maximum surface tensile stress to 
diminish and to move outwards from the con- 
tact circle. However experiments with lubricated 
contacts [24] do not give a significantly different 
result, and experiments without elastic mis- 
match [27] still give ro/a > 1. The other expla- 
nation is based on a Weibull distribution of 
flaws in the undiminishing stress field approxi- 
mation [26, 29] but three parameters must be 
adjusted by best fit with experimental results. 

A more simple explanation is proposed here, 
based on remarks by Nadeau [30] and Lawn et 
al. [31]. They noted that, as the stress gradient is 
steepest close the contact circle, the flaws were 
more likely to grow at a larger ro/a where the 
tension remains reasonably high along its entire 
length; for small cf the starting point of the cone 
crack is very close to the contact circle, while for 
large cr it lies well outside [31]. Similar remarks 
were made later by Warren [6]. 

Figs. 10 and l l display, for various given 
values of cf/a, the variation of the function 
with ro/a, for both the flat punch and the sphere. 
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Figure 10 Flat punch (v = 0.22). Strain energy release rate 
function qb for surface flaws of reduced length cf/a, as a 
function of their relative location ro/a. 
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Figure 11 Spherical punch (v = 0.22). Strain energy release 
rate function �9 for surface flaws of reduced length ella, as a 
function of their relative location ro/a. 

Thus for a given radius of contact and a surface 
with uniform distribution of flaw with the size % 
the flaws situated at a distance ro/a correspond- 
ing to the maximum of �9 undergo the maximum 
stress intensity factor at the tip and will extend 
when the load is increased. Fig. 12 shows the 
displacement of this maximum with cf/a: the 
starting radius r o/a monotonically increases with 
cr/a. Due to the steeper decrease of stresses, the 
starting radii are larger for the fiat punch than 
for the sphere. 

Curves at constant cf/a in Figs. 10 and 11 
represent vertical sections through the curves of 

rola 

1.E 

10 5 10 10 2 cf/a 15 

Figure 12 Starting radius ro/a of the crack as a function of 

ef/a (v = 0.22). 



Figs. 6 and 7, so that the maxima of the curves 100 
in Figs. 10 and 11 are the upper envelope of the - ' ~  
curves in Figs. 6 and 7. (For clarity this envelope 
is not displayed.) It  is thus possible to give a ~ 
complete description of the phenomena by 
inspecting Figs. 6 and 7. Note  that the ascending 50 
branch of the envelope is tangent to the unstable 
branches of  the [@(c/a)]ro/a curves, whereas the 
descending branch is tangent to the stable 
branches. 

6. Cri t ical load for  the f la t  p u n c h  
Fig. 6 displays two maxima for ro/a < 1.2; from 
Fig. 12 this corresponds to cr/a < 1.7 x 10 .2 
(small flaws or large punches). 

Let us first consider the case cr/a < 1,7 x 
10 -2, and take for example cf/a --= 4 x 10 -3.  A 
vertical line from this point intersects the envel- 
ope, giving @(cf/a) = 3.7 x 10 . 4  at ro/a = 
1.10. From Equation 8, the critical load for 
equilibrium is 

( E3ET ~1/2a3/2 (11) 
eo = 52 , , 2 ( 1  - v2)} 

From this unstable point, the curve ro/a = 1.10 
must be followed. The crack extends at constant 
Pc and stops at c/a = 2.4 • 10 -2. Increasing 
the load further (see Fig. 8), a second critical 
load P*  for the formed cone appears at c*/a = 
6.7 x 10 -2 with [@(c*/a)]11o = 2.7 x 10 -4. 
Hence the critical load is 

( K3ET ~'/2a3/2 
P* = 61 \2(i- --- -v2)J (12) 

and the stable length of  the cone is given by 
c/a = 1.47. The cone then stably extends when 
the load increases. P*  is 17% higher than Pc at 
cr/a = 4 x 10 -3 ; i t i s7% higher at cr/a = 10 3 
and 32% higher at cr/a = 10 -2. 

Consider now the c a s e  cf/a > 1.7 x 10 2, 
say cr/a = 3.1 x 10 2. The curves give ~(cf/a) 
-- 1.09 x 10 . 3  at ro/a = 1.30 and the critical 
load is 

( 713E~ ~1/2a3/2 (13) 
Pc = 30  22(1  - v2 ) )  

The equilibrium is still unstable, but the crack 
propagates only to 5 x 10 -2 and becomes 
stable. 

Fig. 13 shows the variation of  [d~(cf/a)] i/2 
against cf/a along the envelope. From Equation 

;, Auerbach range- -  

, f f 4 ~ , I F L A T  PUNCH 

SPHERICAL P U N ~  
i 
i 

0 5 10 15 
10 2 cfla 

Figure 13 Variation of  [r ] 1/2 against cr/a along the 
envelope of the curves Figs. 6 and 7. This quanti ty is pro- 
portional to ec/a 3/2. The plateau represents the "Auerbach 
range", v = 0.22. 

8 this quantity is proportional  to Pc/a 3/2. For  
2 x 10 .2 < cr/a < 1.1 x 10 -I, Pc becomes 
proportional  to a 3/2 and independent of  the flaw 
size. The suddenness of  the appearance of  the 
crack and its size decrease as cr/a increases. This 
is shown in Fig. 14 which gives the spontaneous 
crack extension at the critical load. (This critical 
load is P*  for cf/a < 1.7 x 10-2.) It  clearly 
appears that the flat part  of  Fig. 13 corresponds 

113 
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Figure 14 Flat punch (v = 0.22). Equi l ibr ium size of  the 
crack under cri t ical load Pc as a function of ella. The com- 
puted starting of  the crack is indicated. 
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to small cones or shallow rings connecting flaws 
well outside the radius of  contact. 

On the plateau (the "Auerbach range"), [~(c/ 
a)] m takes the value 32 for v = 0.22, hence 
surface energy can be computed from the observed 
values B = Pc/a 312 using the expression 

B 2 
7 = 6 x 10 -5-~- (14) 

7. The case of  the  sphere:  the  
Auerbach  range 

The case of  the sphere is more complicated than 
that of  the fiat punch since the radius a increases 
with the load, so that cf/a is no longer an initial 
datum of  the problem. However,  one has a sup- 
plementary equation, the Hertz law 

31  - v 2 
a 3 --  - -  k P R  (15)  

4 E 

with 

1 - v '2 E 

k = I + 1 -- v 2 E '  (16) 

(k = 1 for a rigid indenter, and k = 2 for 
indenter of  the same material). Inserting this 
value in Equation 5, one has 

16 P 
G - 37t3 kR [~(c/a)l'~ (17) 

and the critical load is 

3/~ 3 

Pc - 8[~(c/a)lro/. k T R  (18) 

equivalent to Equation 8. At the instant of  initia- 
tion, r0 and a are fixed (although still unknown) 
and the curve G/27 against cf/a for P = Pc has 
the same shape as the curve ~(c/a) in Fig. 7. I f  
cf/a is sufficiently small the equilibrium is 
unstable, and a large cone can be spontaneously 
formed at constant Pc, r0 and a. The smaller 
value of  cf/a, the larger the cone. 

At this stage the values of  eda and ro/a are not 
yet known. Eliminating Pc between Equations 15 
and 18 gives 

9rc3(1 - -  v2) g R 2 k 2 ( ~ ) 3 ( 1 9 )  
[~(c/a)]'~ = 32 Ec 3 

The right-hand member  gives a family of  
straight lines of  slope 3 in Fig .  7, which are 
followed by increasing the load of constant cf. 
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The values of  cf/a and ro/a are determined by the 
intersection of  these lines with the envelope of 
the [~(c/a)],o/a curves. As for the flat punch, this 
envelope corresponds to the maxima of  the 
[Cb(ro/a)]cr/a curves of  Fig. 11. It  thus appears that 
ro/a decreases as R increases, as observed by 
Hamil ton and Rawson [26]. Fig. 13 gives the 
variation of  Pc along this envelope. As for the 
flat punch, near the maximum of the envelope Pc 
becomes proport ional  to a 3/2 (i.e. proport ional  to 
the radius R of  the ball), and independent of  the 
original flaw size for 2.5 x 10 -2 < cda 
< 10-l,i.e. for0.3 < (TRZkZ/Ec~) < 10. Thisis  
the Auerbach range. Taking [O(e/a)]-i/2 = 24 in 
Fig. 13 and defining B = P/a 3a, the constant 
observed ratio, one has 

B 2 
7 = 1.07 x 10 - 4 _  (20) 

E 

or using Equation 18 

- 6.7 x 103k2 = A (21) 
R 

where A is the Auerbach constant. In this range 
near the maximum of  the envelope only a shal- 
low ring appears, as noted by Tillet [23] and 
Warren [6]. 

For very small cda (large ball radius), the 
undiminishing stress field approximation for the 
critical load (Equation 10) gives 

(22) 

as noted by Langitan and Lawn [21] (for to~ 
a = 1), and Wilshaw [22] (excepted for a factor 
1.12). When cf/a tends to zero, ro/a tends to 1 
(see Fig. 12) and Pc varies as  R2/c~/2.  For  any 
value of  ?R 2 k 2/Ec~, O(c:a) can be evaluated and 
then Pc by means of Equation 18. Fig. 15 dis- 
plays the variation of  Pc/TR as a function of  
R/c~/2 and k = 1 or 2, and for 7tE = 5 x 
10 11m, a representative value for glass. For  
k = 1, Pc/TR can be considered as a constant for 
R/c~ a varying between 8 x 104m -1/2 and 4.5 x 
105m -1/2 , i.e. for R between 0.2 and 1.4mm with 
cf = 2#m,  or R between 2.5 and 16ram with 
Cr = 10/~m. This range thus extends over a fac- 
tor of  6.3 for R, and a factor 3.4 for cf. Note that 
the largest observed ranges (Tillet [23], Powell 
and Tabor  [32]) give a factor 8 for the radii. 
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Figure 15 Spherical punch (V = 0.22). Critical load and 
equilibrium size of the crack as a function of  the radius of  the 
ball, in reduced coordinates, k = 1 is for a rigid sphere and 
k = 2 for a sphere of the same material as the specimen. 
7/E = 5 x 10-Um.  

The limits of the Auerbach range can also be 
estimated by direct inspection of Fig. 7. The 
envelope of the ~(c/a) curves becomes nearly 
constant for 0.3 < 7R2kZ/Ec~ < 10; hence the 
limits are given by 

Ru 
- ~ )  < c~l--- ~ < \7k2) (23) 

For large values of  R/c~ i2, Pc becomes progress- 
ively proportional to R 2 (undiminishing stress 
field approximations). Such a behaviour from 
Pc ~ R to Pc "" R2 was observed by several 
investigators [23, 26, 29, 33]. 

The extension c/a of the crack when stable 
equilibrium is reached is also given in Fig. 15. 
Only outside the Auerbach range (small cr/a), 
does a well-formed cone appear at Pc- 

7.1.  D i scus s ion  of  t he  A u e r b a c h  " ' law" 
Since the work of Roesler [34] the explanation of 
the Auerbach "law" has been the subject of  
dispute, for this law is an apparent violation of  
the Griffith criterion. The criterion for a flaw in 
equilibrium in a uniform stress field is 

(?E'] ~/2 
~ - -  (24) 

\ c f /  

Using the tensile stress at the edge of the contact, 

a ~ P/a 2 (Equation 1 a), together with the Hertz 
law a 3 --~ PR/E, we obtain 

y3/2 R 2 
ec (25) 

This naive interpretation of the Griffith criterion 
(neglecting the stress distribution along the flaw) 
thus predicts Pc ~ R2, not Pc ~ R. Conversely, 
Pc ~ R means a ~ R -~/3, a striking effect. 

A first explanation based on flaw statistics was 
proposed by several authors [26, 29, 35, 36]: 
smaller indenters produce a smaller stressed sur- 
face area and have a lower probability of  includ- 
ing large flaws, so that a larger load than that 
predicted by the R 2 law must be applied. They all 
used the undiminishing stress field approxi- 
mation, only valid for small cr/a, i.e. large radii 
(where the Auerbach law does not hold!) and 
adjusted the two or three parameters of the flaw 
statistics to the experimental results. Further- 
more one parameter appears to be ball-size 
dependent [37], and the three parameters 
obtained from the Hertzian tests differ from 
those obtained from bend tests [37, 38]. 

A second explanation was proposed by Lawn 
and co-workers [4, 15, 21] taking into account 
the stress distribution along the crack which they 
assume to start at ro/a = 1. Unfortunately, they 
performed their calculation on.a  high value of 
v(v = 1/3) that gives a hump On the ~(c/a) 
curve (when using Equation 2a), and they based 
their explanation on the existence of  such a 
hump. They predict an Auerbach range extend- 
ing over two powers of  ten with well-formed 
cones in this range. However, as shown by 
Wilshaw [22] and Warren [6] such a hump does 
not exist for v = 0;25 or disappear at v = 1/3 
for r/a > 1. Warren [6] pointed out the dramatic 
influence of  v and r/a, and proposed to assign 
Auerbach's law to the maximum of  ~(c/a) at 
c"/a, provided there are flaws of size larger than 
c"/a. His treatment does not hold for surface 
having flaws of unique length Or; in this case Pc 
goes through a minimum for c / a =  c"/a and 
then increases. Warren predicts also that there is 
n o  upper flaw-size limit for the validity of  the 
Auerbach law [39], moreover his Auerbach con- 
stant depends on the observed re~a, and if ro/a 
changes with R, Auerbach's law becomes 
impossible to explain with this theory. 

The present analysis is based not on the r 
curves but on their envelope for various values 
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of ro/a. It allows for the prediction of ro/a at 
crack initiation, and an Auerbach range can 
be predicted even if all surface flaws have 
a constant size. The physical meaning of  the 
Auerbach range is more obvious by considering 
that flat punch for which there is one less vari- 
able. At small cr/a (large radii) Pc decreases 
when cr/a increases as for any Griffith flaw of  
increasing length, but for large cf/a, Pc increases 
when cr/a increases because the stresses at the 
crack tip become smaller and smaller. Between 
the two, there is a minimum in Pc. This min- 
imum is a plateau for a balance between the two 
effects is found in this range by finding the 
appropriate  value of ro/a that gives the 
maximum value of  G. 

8. Stable propagation of the 
formed cone 

For  a given cf, a well-formed cone can be 
obtained either instantaneously at the load Pc for 
a large punch, or from a ring crack by increasing 
P above Pc. In either case the formed cone of  
length e is in stable equilibrium, although this 
equilibrium can take very long to reach. Its 
length increases as P further increases. For  a flat 
punch ro/a remains constant during this stable 
growth, but for a sphere the value of  ro/a 
decreases as P increases; hence there is an uncer- 

�9 tainty in computing r as noted by Matzke 
and Warren [40], although they have shown by 
serial sectioning that the cone path is not very 
sensitive to the value of  ro/a at which it is 
created. 

For  well-formed cones with a base s much 
larger than a, Roesler [7] has shown by scaling 
laws that G could be writtern as 

p 2  

G = D - -  (26) 
E s  3 

and gave for v = 0.25 by a lengthy calculation 
D = 2.15 • 10 -z as the upper bound. Equa- 
tion 26 can be obtained by a more direct route 
(see Appendix) but gives D = 7.6 • 10 -2. A 
calculation by the finite element method has 
been undertaken (to be published) which gives 
D = 5.7 • 10 -3 for 0 = 68 ~ a n d v  = 0.22, a 
value 3.8 times lower than the Roesler one. This 
proportionali ty between s and p2/3 was well veri- 
fied [7-11] for the fully developed cone. Note  in 
passing that some experimenters used a sphere 
with a machined flat to give a constant area of  
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contact. In fact, in this geometry, the area of  
contact increases with load in a predictable man- 
ner [41, 42]. But fortunately Equation 26 is 
independent of  the radius of  contact. 

Comparison of Equations 5 and 26 shows that 
at large c/a, OO(c/a) should vary as 

1.02 D 
�9 (c/a) = (27) 

+ - sin 0 
a 

with a slope of the curves y = logq~ against 
x = log (c/a) given by 

C . 
- san 0 

dy a 
- 3 ( 2 8 )  

dx r c 
- + - s i n  0 
a a 

Equation 27 with the Roesler D value is com- 
pared to the numerical integration of Equation 
6 in Figs. 6 and 7. The terminal slope m = 
- 1.7 for ro/a = 1.6 is still different from the 
value m = - 2.56 derived from Equation 28, 
but this result is much better than the slope 
m = - 0.8 obtained when using Equation 2a 
instead of  Equation 2b. This slight discrepancy 
can arise either f rom a lack of  precision in 
numerical computat ion at large c/a, or from the 
fact that the analysis uses the stress tensor of  the 
uncracked half-space. Certainly stresses and 
stress trajectories are modified in the presence of  
a well-formed cone, and a detailed comparison 
with calculation by the finite element method 
will be of  interest. 

9. Influence of the Poisson ratio 
As pointed out by Warren [6] the curves r 
are very sensitive to the Poisson ratio. For  exam- 
ple, Figs. 16 and 17 show the curves OO(c/a) for 
various values of  v and three of  ro/a, for the flat 
punch and the sphere. So, a large error in the 
Auerbach constant can arise if the proper value 
of v is not used. For v = 1/3, Langitan and 
Lawn [21] gave 

A -- 2 • 105k~ (29) 

(with k defined by our Equation 16). The dif- 
ference of a factor 30 compared with Equation 
21 arises both  from the choice of v = 1/3 and 
from the fact that they used the minimum of 
~b(c/a). When applied to glass their formula 
gives a fracture energy too low by an order of  
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magnitude, as noted by Nadeau  [30] and 
Nadeau  and Rao [12]. 

10. Experiments 
1 0.1.  P r o c e d u r e  
Tests were made on optical glass plates (borosili- 
cate glass) measuring 50 mm x 50mm x 25.4mm. 
Elastic properties of  the glass measured by 
ultrasonic methods were v = 0.22 • 0.02 and 
E = 8.0 x 10 l~ + 0.1 x 101~ 

Before indentation, surfaces were abraded in 
two perpendicular directions using Nos. 400, 
600, 1000 and 1200 SiC abrasive paper  or 7 # m  
diamond paste. Samples were stored in air in the 
laboratory,  sometimes for days, before testing. 
No attempts were made to "freeze in" the state 
of  the specimens, by immersing them in liquid 
nitrogen before testing to avoid the ageing of 
abrasions as suggested by Mould [43], for the 
authors were unaware of  his work at that time. 
This negligence can explain a large part  of  the 
scatter of  experimental results. The depth of 
microcracks was not measured, but following 
Langitan and Lawn [21] was taken as half the 
nominal particle size, i.e. cf = 19#m for SiC 
400, cr = 10#m for SiC 1000 and 1200, and 
cf = 3 #m for the diamond paste. Note however 
that other authors gave smaller estimations: 
Mould and Southwick [44] estimated the depth 
of damage to 5 #m for 600 grit emery, and to 
10 #m for 320 grit emery, whereas Pavelchek and 
Doremus [45] proposed a median crack length of  
6 #m for 400 grit SiC paper. 

The elastic properties of  the steel indenters 
werev  = 0.33 a n d E  = 2.1 x 1011Pa ,so tha t  
k ~ 1.35. The radii of  the flat punches were 
0.05, 0.1, 0.25, 0.5, 1 and 2.5 ram; the radii of  the 
spheres were 0.79, 2.37, 3.17, 5.15, 7.53, 12.7, 
15.87, 24.61 and 37.51 ram. 

The specimens were indented at 20~ on an 
Instron testing machine at the minimum speed 
(50 #m min-1). The area of  contact and the 
crack were observed through a prism and meas- 
ured with a micrometer (Fig. 18). The machine 
was stopped as soon as an event was detected, 
the load Pc noted*, and measurements made 
after 3 min. Depending on the indenter size and 
on the abrasion, two events could be observed: 
either the sudden apparit ion of  a cone, or a small 
light corresponding to a growing flaw. In the 

*This load is an apparent  critical load, and its meaning will be discussed in Section 11. 

4365 



I 
testing machine 

1 
nch ~] 

pecimen. 

Iood cell 1 

opticol meosuring 
opporOtus 

Figure 18 Schematic view of the apparatus. 

either case, the crack continued to propagate, 
but very slowly, when the machine was stopped, 
and a small load relaxation could be observed at 
fixed machine displacement. In the second case, 
in order to easily measure the radius of  the 
crack, the load was slightly increased so that this 
starting crack could gently run around the con- 
tact area. About twenty indentations were made 
for every indenter and every abrasion. Experi- 
ments were performed in the laboratory atmos- 
phere at 20~ and a relative humidity of  about 
40%. 

10.2. The starting radius of the crack 
The ratios of the observed crack radii to the radii 
of  contact are given in Figs. 19 and 20. For  the 
two kinds of  punches, ro/a decreased as the radius 
of  contact increased; moreover the starting radii 
were larger for the flat punches than for the 
spherical punches. All these three results are in 

agreement with the theory of  a maximum of  G 
for flaws not too close to the contact circle. 

However, when compared to theoretical values, 
these starting radii appear higher. This means 
that other phenomena such as flaw statistics and 
interfacial shear Stresses cannot be neglected. 

10.3.  Critical load for the  flat p u n c h  
The results given in Fig. 21 can be compared to 
the theoretical curve in Fig. 13. Pc becomes 
proportional to a 3/z and independent of  cr for 
sufficiently small radii, the limiting radius 
increasing with cr. With the estimated cf, the 
limiting observed values are cr/a = 8 • 10 -2 
for SIC400, 4 x 10 -2 for SIC1000 and 
2 • 10 -2 for diamond paste, compared to the 
predicted value cf/a = 2 • 10 -2. 

In the experimental range 1.2 • 10 -3 < Cr/ 

a < 4 • 10 -~, an intermediate stable equilib- 
rium should have been detected for cr/a < 2.6 • 
10 -z. Such a stepwise process was not observed. 
Two reasons can be invoked: the equilibrium 
values of  c/a are small and difficult to detect, and 
the load continuously increases so that P* can be 
reached before the equilibrium crack has fin- 
ished its propagation round the indenter. 

The cones formed had an angle 0 ~ 68 ~ and 
the length of  the crack approximately given by 

c = - r sin 0 

is displayed in Fig. 22. This figure shows that the 
spontaneous extension of the cone decreases, 
and then disappears in the plateau regime where 

r/o / 
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Figure 19 Flat punches. Starting radius of the crack against the reciprocal of the punch radius, for two abrasions: 
(o) SiC 1000, (a) SiC 400. 
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Pc becomes proportional to a 3/2, in agreement 
with the theory. 

Taking B = P~/a 3/2 --- 75 x 106Nm -3/2 from 
Fig. 21, Equation 14 gives 7 = 4 .2Jm-2.  
Fig. 23 shows the distribution of 7 when using 
the results given by the two punches a = 0.25 
and 0.1 mm at various abrasions (except dia- 
mond paste for a = 0.25 ram) with (I) = 10 -3. 

10.4. Critical load for the sphere 
Measurements of the radii of contact just before 
fracture give values larger than the calculated 
ones, by about 16%. This discrepancy, often 
quoted in Hertzian indentation [23, 39, 4648] ,  
may arise from the roughness of the glass. The 
elastic contact of a smooth sphere with a nomin- 
ally flat random rough surface has been con- 
sidered in a number of papers [49-53]: at high 
loads the behaviour is Hertzian, but at low loads 
the deformation is almost entirely confined to 
asperities, the maximum pressure is much less 

Figure 20 Spherical punches. 
Starting radius of the crack 
against the reciprocal of the con- 
tact radius, for three abrasions: 
(O) diamond 6 #m, (v) SiC 1000, 
( x ) SiC 400. 

than the Hertz value, and contact spreads over 
an area much greater than the Hertz circle. 
Fig. 24 shows the radius of  contact against load 
for SiC 1000 abrasion and three different ball 
radii: the radii of contact are larger than the 
calculated ones, especially at low loads. From 
Greenwood and Tripp [49], high loads begin for 

2(1 - v 2) k P  
T - > 200 (31) 

a E ( 2 R a )  r/2 

where o is the standard deviation of the height 
distribution. Attempts have been done to measure 
o with a Talysurf but "high load" limits com- 
puted were too low by an order of magnitude, 
presumably because the diamond could not 
reach the bottom of roughness, giving thus a o- 
too low. As noted by Johnson et al. [27] the 
effect of surface roughness is to reduce the max- 
imum value of the tensile stress and to increase 
the radius at which it occurs. This effect is quali- 
tatively similar to that of interfacial friction. 

t~J 

100 

50 

0 
0 2 4 10 

I 
2 O  

11a (ram - I )  

Figure 21 Flat punches. Apparent 
critical load against the reciprocal 
of the punch radius. The plateau 
corresponds to the "Auerbach 
range". Abrasion (O) diamond 
6#m, (O) SiC 1000, (A) SIC400. 
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Figure 22 Flat punches. Exten- 
sion of the cone after 3 rain under 
the apparent critical load, for vari- 
ous punch radii and abrasions: 
(o)  SiC 1000, (A) SIC400. 

Fig. 25 shows Pc/R against R. For  SIC400, 
1000, and 1200 an Auerbach range is observed. 
In this range, the critical load corresponds to a 
surface crack slowly running round the contact 
area. In the case of  abrasion with diamond paste 
no Auerbach range is found, and a well-formed 
cone suddenly appears at Pc- With the Auerbach 
constant A = 50 x 103Nm -I ,  Equation 21 
gives 7 = 5 .5Jm -2. This equation involves a 
theoretical Hertz radius, but if instead the 
observed radii of  contact are used, and Pc/a 3/2 
plotted against 1/a (Fig. 26) as for the flat 
punch, the observed plateau gives Pc~a3/2= 

20 

10 

I 2 

1 

3 4 5 6 7 

Y ( J  rfi 2 ) 

Figure 23 Flat punches. Histogram of apparent surface 
energy computed from Equation 8 with qb = 10 3 
(Auerbach range). Punch radii 0.25 and 0.I ram; v = 0.22; E 
= 8 x 101~ mean 7 = 4.06Jm 2. 

B = 6 x 107Nm -3/2, and 7 computed from 
Equation 20 is 4.8 J m -2 closer to the value ob- 
tained for the flat punch (7 = 4 .2Jm-2) .  
Fig. 27 shows the distribution of 7 when using the 
results given by five ball radii in the Auderbach 
range, with ~ = 1.8 x 10 -3 as the maximum of 
the envelope; the mean value is 7 = 4.6 J m -2. 

However, the limiting values Ro for the 
Auerbach range are not in agreement with the 
theory. Inserting ~ = 4 . 5 J m  -2 in Equation 23 
one would have Ru = 1.6ram for cf = 3#m, 
R, = 9.9ram for cf = 10#m, and Ru = 26ram 
for cf = 19/~m. The observed values of  Ru are 
larger for SiC papers and smaller for diamond 
paste. 

10.5.  T h e  w e l l - f o r m e d  c o n e  
Well-formed cones are observed both with flat 
punches and spheres, either suddenly at Pc for 
small cr/a or by increasing the load after 
initiation of  a circular ring. The results are given 
in Fig. 28 for a 3 rain contact under load. The 
relation between s and p2/3 is well verified and is 
independent of  the shape of  the indenter and the 
abrasion. Application of  the Griffith relation 
G = 27 with G given by Equation 26 and with 
the Roesler value D = 2.15 x 10 -2 leads to 
2.5 < 7 < 8 J m - 2 ,  whereas the rough calcu- 
lation given in the Appendix (with v = 0.22 and 
0 = 68 ~ ) leads to8  < 7 < 16Jm-2 ,  valuescer- 
tainly too high. On the other hand, calibration 
by the finite element method gives 

4 3 6 8  



i 
a(mm) 

0,3 

0,1 

0,03 

. ~ ( x )  

A ~  ~crack initiation 

I I I I I 
30 100 300 1000 3000 P(N) 

Figure 24 Spherical punches.  Observed radius of  contact  against load for three ball radii, and abras ion with SiC 1000. At 
low loads radii of contact depart from the Hertz law (Equation 15) illustrated by the labelled straight lines: k = 1356, 
E = 8 x 10t~ v = 0.22. 

0.65 < y < 2 J m - 2 ;  these low values are no t  
unreal is t ic ,  as discussed in Sect ion 11. 

Af te r  3 min  the c rack  is no t  yet  in equi l ib r ium 
and cont inues  to grow for hours .  Af te r  one hou r  
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the value o f  7 given by the Roes ler  fo rmula  is 
a b o u t  1.25 J m 2, whereas  it is a b o u t  0.32 J m -2 
by the finite e lement  me thod .  Such kinetic effects 
in Her t z i an  f rac ture  have been observed by  

' ~ ' I i I I r I I I I t I I 
t(1 , , ' R ( m m )  0 20 30 40 

Figure 25 Spherical punches.  Apparen t  critical load against ball radius for four  abrasion types. The Auerbach  law is obeyed 
with SiC but  not  with d iamond paste. With the Auerbach  constant  A = 50 x 103 N m  t, Equa t ion  21 gives ? = 5.5 J m -2. 
Abras ion  (O) d iamond 6./~m, (O) SiC 1200, ( x )  SiC 1000, (A) SIC400. 
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Figure 26 Spherical punches. Apparent  critical load against the reciprocals of  observed contact radii, for four abrasion types. 
F rom the Auerbach range observed with SiC, Equat ion 20 gives 7 = 4.8 J m 2. Abrasion (e )  diamond 6~um, (O) SiC 1200, 
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Figure 27 Spherical punches. Histogram of  apparent  surface 
energy computed from Equat ion 8 with �9 = 1.8 x 10 3 
(Auerbach range). Punch radii 3.17, 5.15, 7.58, 12.7 and 
15.87mm; v = 0.22; E = 8 x 101~ mean  y = 
4 . 6 J m  -2. 
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Roesler [7], Tillet [23], Culf [8], Argon et al. [24], 
Langitan and Lawn [54], Mikosza and Lawn 
[55], Nadeau and Rao [12], Lawn [56], Swain 
and Lawn [10], and Conrad et al. [28]. In par- 
ticular Roesler [7] noted that "twenty seconds 
after loading the value of 7 is twice the 15-minute 
value. After the load has been on for several 
days the value of 7 is half the 15-minute value". 
This slow crack growth is discussed below. 

11.  S u b c r i t i c a l  c r a c k  g r o w t h  
Hitherto, we have applied the Griffith criterion 
without precaution, and we have to discuss the 
significance of the 7 values so obtained. This 
problem of intrinsic surface energy, fracture 
toughness and subcritical crack growth is dis- 
cussed in more detail by Maugis [57], and only a 
brief account is given here. The analysis is based 
on the model proposed by Maugis and Barquins 
[58, 59] for the kinetics of crack propagation 
between rigid punches and viscoelastic solids 
(e.g. polyurethane). 

Thermodynamics shows that a crack is in 
equilibrium if G = 27 (the Griffith criterion) 
where 7 is the intrinsic surface energy. This 



10 

! 
3 

1 

0.3 

CR) 
/ / F = l . 2 5 J  rn 2 

/ / - F = 2 5 J  n~ 2 

l P . / .~ .F=5J n~ 2 
_ . I "  I, punch ~/ .= /~ , - "  ~, Y:,OJ nf 2 

I / .  ~ ' ) P  / 
- I 4 , ~ ) ~ .  W spherical punch 

.- o ~ . -  ." o diamond 6m'~ 
/ . ~ . / P ~  .- 

/ .~__.,~/.- ~ ' ~  / / . , ~  ~ SiC 1200 
/ / o . . , ~ " ~ , ' ~ , .  / / I  o SiC 1 0 0 0  

- ~ .  _ / ~  ~ / I " Si C 400 

(~=~ / . ,> ; : .  . / I f iat punch 
k ~ L j / / -,'~-" i ~ I 

0.32J m ~' / I n 7  i J I _ o : ~  , o n e ,  
- 0.65J ~ ~ % ' ~  / / / I - ~n ~ �9 ,~ , . ,~  

1.3J ~ 2  , / = / /  3 �9 S i C  1 0 0 0  
/ 

2.6 J ~2  / e f t e r  one 
o h o u r  �9 S i C  4 0 0  

0,1 I I I I I I 
3 10 30 100 300 P (daN) 

Figure 28 Well-formed cones. Diameter of the base of the cone against load after 3 or 60min contact. Surface energy 

estimated from Roesler approximation (R) and from finite-element calculation (FE). 

equilibrium is stable at fixed load if (OG/Sc)p < 0 
and unstable if (~G/Sc)p > 0. I f  G > 27 the 
crack advances and if G < 27 it recedes. Such 
equilibrium and crack recession have been 
observed at the glass-polyurethane interface. 
The Dupr6 energy of adhesion w (that replaces 
27 at an interface) deduced from equilibrium 
cracks was about  50mJ m -2. 

(G - 27) is the force applied per unit length 
of crack. In a purely elastic solid, a crack sub- 
jected to a constant force (G - 27) > 0 con- 
tinuously accelerates. In a real solid, dissipation 
occurs at the crack tip (due to viscoelasticity or 
internal friction) and the crack takes a constant 
velocity v. Maugis and Barguins [58, 59] have 
proposed the equation 

G - 27 = 27c~(T)0(v) (32) 

where the multiplicative factor 7 on the right- 
hand side means that losses at the crack tip are 
proportional  to the intrinsic surface energy. 
(Losses only arise if the interface itself is capable 
of  withstanding stress, as noted by Gent  and 
Schultz [60] and Andrews and Kinloch [61] in 
their studies of  adhesion failure.) This equation 
is astonishingly well verified for glass-  

polyurethane with q~(v) ~ v ~ over about  five 
powers of  ten in velocity. In particular, the 
whole curve log G against log v is translated 
towards lower values of  G in the presence of 
water vapour,  even at high G values (G >> w). 
Maugis [62] has pointed out that above a critical 
velocity vc, corresponding to a critical strain 
energy release rate Go, the energy losses at the 
crack tip can decrease, but that the branch with 
a slope dO/dr negative cannot be observed, so 
that the speed jumps (with acoustic emission) to 
a value some orders of  magnitude higher on a 
second stable branch most  probably related to 
energy losses by radiation near the Rayleigh 
velocity. Fig. 29 shows the superposition of  a 
curve of  brittle fracture (with dynamic effects) 
and a curve for viscoelastic losses or internal 
friction. The condition of stable or unstable 
crack propagat ion defined by the sign of d(a/dv 
is related to the thermodynamics of  irreversible 
processes [57] and must not be confused with the 
condition of  stable or unstable equilibrium 
defined by the sign of ~G/Sc. in this model one 
has 

G < 27 crack closure 
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Figure 29 Superposition of  a curve for britt le fracture (with 
dynamic effects) and a curve for viscoelastic losses or 
internal friction. Subcritica] crack growth corresponds to 
v < v c. The negative branch cannot  be observed and a jump 

in velocity occurs, with acoustic emission, at G c. When a 

mean velocity between vo and v~ is imposed, stick-slip 
motions occurs. 

G > 27 crack advance 

27 < G < Gc subcritical crack growth 

G > Gc catastrophic crack propagation 

If  vo is small, the crack growth is not apparent 
and the condition G = G~ for crack velocity 
discontinuity and catastrophic failure can easily 
be confused with the condition G = 27 for crack 
equilibrium by writing G~ = 27f where 7f is a 
"fracture surface energy" (for glass-polyurethane 
Gc - 103w). However if so, subcritical crack 
growth in a vacuum becomes incomprehensible, 
and stress corrosion must be invoked to explain 
the increase in crack velocity with humidity. 
This proposed model can also explain embrittle- 
ment effects and stick-slip crack motion when a 
mean velocity is imposed in the negative branch 
range [57]. 

In this view, the static fatigue limit K 0 of  glass 
corresponds to an equilibrium crack and gives 
the intrinsic surface energy. For  soda-lime glass 
in a vacuum or in dry air this static fatigue limit 
is about K0 = 0 .50MPam 1/2 [63], i.e. for plane 
stress (DCB, CT or DT specimens) 70 = 1.8Jm-2, 
whereas the critical stress intensity factor is K~o = 
0 .76MPam m, i.e. yf = 3.9Jm -2 [64, 65]. In the 
presence of humidity the whole log v-log K~ curve 
is shifted towards lower values of K~ (Fig. 30), 
but this phenomenon is obscured by the limitation 
of the rate of water transport to the crack tip 
(Region II), and one returns to the vacuum value 
(Region III) at high velocity. Literature data 
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Figure 30 v(K=) curves. Lowering the intrinsic surface energy 
shifts the whole curve to lower K values. 

give K0 = 0.25 MPa m I/2, i.e. 7 = 0.45 J m-2, 
for soda-lime [66, 67] or borosilicate in water 
[66]. 

Let us return to Hertzian fracture (Fig. 9) and 
assume for simplicity that Gc/27 = 10 in moist 
air. (This ratio is in agreement with the fact 
known since the work of  Holland and Turner 
[68] that the endurance limit is about one-third 
of  the instantaneous tensile strength.) Starting 
with an initial flaw cf < c", the load is increased 
at constant rate until G = 27 (Point A). At this 
point the flaw is in unstable equilibrium and 
begins to grow, with G increasing as the crack 
length increases, but the crack velocity near 
G = 27 is so low that this growth is not appar- 
ent; the applied load is allowed to increase, miss- 
ing Pc, until something happens. An event can be 
detected, and the machine stopped, when the 
crack velocity reaches (say) 10 -3 m sec-i (Point 
B). But subcritical crack growth curves show 
that such a velocity corresponds to G -~ Go. The 
lower the loading rate, the larger the time allowed 
for the flaw to grow and reach high G values and 
the lower the apparent critical load, as shown by 
Langitan and Lawn [54], Swain et  al. [69] and 
Conrad et al. [28]. From Points B to C the crack 
velocity sharply increases and then decreases. 
At Point C a ring has been formed quasi- 
instantaneously, but the crack continues to grow 
more and more slowly for hours towards the 
equilibrium cone at Point D. If  the starting flaw 
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Figure 31 Cone crack length c as a function of indentation 
time t o for four test environments: (A)water ,  (O)air ,  
( I )  toluene, ( x ) silicone oil. All data for Pc = 65 kg. Note 
discontinuities in growth across "forbidden" gaps, and the 
similarity in the shapes of  curves for different environments 
(after Mikosza and Lawn [55]). 

c~ is smaller, when the machine is stopped at 
Point B' a large cone is instantaneously formed 
at Point C' with a crack velocity reaching cata- 
strophic speed at the maximum of G. On the 
other hand, if the machine is stopped at point 
B", the crack grows subcritically to the length Cr 
at Point B, where its velocity becomes apparent 
and then a ring abruptly appears at Point C. The 
time needed for the crack growth between B" 
and B looks like an incubation time, as observed 
by others [70, 71]. If only fast propagation is 
considered, the behaviour closely resembles the 
theoretical one, but with y replaced by a value 
near 7f. This could justify the Irwin-Orowan 
concept of fracture surface energy. Indeed, the 
values of 7 obtained in Section 10 (4.2. J m -2 for 
flat punches, 4 .48Jm 2 for spheres) approach 
the value yf = 5.2 to 5.8Jm -2 derived from 
K]c = 0.85 to 0.90 M P a m  ~/2 for borosilicate [65, 
72]. 

We can now interpret the results of Mikosza 
and Lawn [55] and Lawn [56]. They applied a 
constant load Pe to a ball, and measured the 
crack length by sectioning and etching after 
various times of load application. They observed 
a slow crack growth followed by a sudden crack 
growth giving a forbidden gap in crack length, 
and then slow crack growth with decreasing 
speed (Fig. 31). At low Pe values this forbidden 
gap disappeared, whereas at high Pc values the 
first stage of slow crack growth disappeared 
(Fig. 32). These results were interpreted as a 
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Figure 32 Cone crack length c (normalized to contact radius 
a) as a function of indenter load Pe. Data points for tests in 
(A) water, (O) air, (111) toluene, and ( x )  silicone oil (after 
Mikosza and Lawn [55]). 

tunnelling through the hump from the cl to the 
c2 branch, and as a proof of the G against c/a 
curves with two maxima and a hump. This was 
puzzling, for it has been known since the work of 
Warren [6] that there is only one maximum for 
v = 0.25. Their results can be clearly under- 
stood with the help of Fig. 9. The first stage of 
slow crack growth corresponds to B"B, the 
apparent forbidden gap to BC, and the slowing 
crack to CD. At lower Pe the apparent forbidden 
gap disappears because the maximum velocity is 
low; at higher Pe the first stage of slow crack 
growth disappears. The increase in mean vel- 
ocity "for subcritical crack growth between c~ 
and c2 branches" with applied load [56] corre- 
sponds to the increase in mean velocity as B" 
approaches B'. 

In the proposed model, acoustic emission 
occurs only when crack velocity jumps from one 
positive branch to the other, in agreement with 
Rose's proposal [73] that acoustic emission cor- 
responds to a crack starting or stopping abruptly. 
The results of Swindlehurst and Wilshaw [74] 
show that a single Hertzian cone produces a 
single emission burst, most probably when the 
maximum of G (see Fig. 9) reaches Go. Presum- 
ably for cones formed at subcritical velocity no 
acoustic emission would be detected. This is in 
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apparent  contradiction with the results of  Evans 
and Linzer [75], Evans et al. [76] and Nadeau 
[77], showing that the rate of  acoustic emission 
exhibits the same functional dependence on K, as 
does the subcritical velocity, but as shown by 
Nadeau [77] this acoustic emission is caused by 
interaction between the moving crack and 
defects on the surface. No such interaction is 
expected for a Hertzian cone. Our preliminary 
results on acoustic emission are in agreement 
with these ideas. 

face energy derived from higher crack speed 
experiments. 

7. Intrinsic surface energy is better 
approached by study of well-formed cones, for 
the crack velocity continuously decreases at con- 
stant load. After the load has been on for one 
hour, application of the Griffith criterion with 
the Roesler approximation gives an apparent  
surface energy of  1 .25Jm -2, whereas prelimi- 
nary results for the finite element method give 
0 . 3 J m  -2. 

12. Conclusions 
The main results obtained in this study are the 
following: 

1. The strain energy release rate for cone 
fracture under flat axisymmetric punches has 
been computed and compared with the case of  
the sphere. 

2. The initiation of the crack outside the 
circle of  contact for flat or spherical punches is 
shown to be due to the steepest gradient of 
stresses near the circle of  contact. 

3. The Auerbach range corresponds to the 
relatively flat maximum of  the r curves 
drawn for various starting radii. In this range 
only shallow rings are formed (c/a < 10-I). 

4. The use of  Equation 2b gives the same 
results as Equation 2a for c/a < 10 -1, but con- 
siderably improves the results for well-formed 
cones (c/a > 1). 

5. A model for subcritical crack growth first 
proposed for adherence of  viscoelastic solids is 
used. It is assumed that the static fatigue limit 
corresponds to the true Griffith criterion with 
intrinsic surface energy 7, whereas K~ and G~ 
correspond to a point where the crack velocity 
jumps to higher values because intermediate 
velocities are unstable. No stress corrosion is 
needed to explain subcritical crack growth for 
27 < G < Go. The whole G(v) curve is assumed 
to be shifted by a change intrinsic surface 
energy. The experimental results of  Mikosza and 
Lawn [55] are easily interpreted by this model. 

6. Experiments on borosilicate glass agree 
satisfactorily with theory. As the loading system 
is stopped as soon as subcritical crack growth 
becomes apparent,  application of  the Griffith 
equation gives values of  surface energy of  about  
4 . 3 J m  -2, larger t h a n  the intrinsic surface 
energy, and slightly lower than the fracture sur- 

Appendix 
Let us consider an isolated frustum of cone of  
base s, height z and cone angle 0 (Fig. 5). Under 
a load P the elastic displacement obtained by 
integration of the Hooke  law is 

Pz 
6 = (A1) 

~zEa(a + z tan 0) 

The total energy of  the system UE + U v = 
{P6 - Pc5 is thus 

p2z 
U = - (A2) 

2nEa(a + z tan 0) 

The variation of this energy when the lateral 
surface of the cone extents by dA can be con- 
sidered as an approximate value of the strain 
energy release rate for the cone crack 

G = - (A3) 
p 

With 

dA = 2~(a + z t an0)  dz = ~s 
cos 0 2 sin 0 

- -  ds 

(A4) 

this becomes 

2 cos 0 p2 
G - ~2 Es3 (A5) 

The equilibrium given by G = 27 is stable, since 
G decreases as s increases. For  0 = 68 ~ this 
rough approximation gives G = 7.6 x 
IO-2P2/Es 3, a value 3.5 times higher than the 
one given by Roesler [7]. In fact the stresses in 
the solid below the cone, clearly visible in Culf's 
photographs [8], have been neglected. Their 
associated elastic energy increases as s increases, 
and should reduce g if taken into account. 
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